二次函数教学反思
身为一名刚到岗的教师,课堂教学是重要的任务之一,借助教学反思我们可以快速提升自己的教学能力,那要怎么写好教学反思呢?以下是小编为大家收集的二次函数教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
二次函数教学反思1自从事教学以来,我还是第一次参与集体单元备课,而且还是复习课,作为主备与主讲之一的我,立足于二次函数在初中数学函数教学中的地位,着眼于20xx年河北省中考方向,根据学生对二次函数的学习及掌握的情况,从梳理知识点出发采用以习题带知识点的形式,精心地准备了《二次函数》的第一节复习课,教学重点为二次函数的图象性质及应用,教学难点为a、b、c与二次函数的图象的关系。
最初,“抛物线的开口方向、对称轴、顶点坐标、增减性”这一相关性质复习设计中安排了3个训练题目,其中第(2)小题侧重在抛物线的对称性与增减性,集体备课后我进一步认识了课标要求河北省中考命题评价方向,在复习侧重方向上作了调整:加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练,从而删去原例(2)增加新例(2)(见复备),另外还预想借图象识别2a与b的'关系将是本节课的一个难点。
本节课在悠扬的音乐声中拉开了序幕,通过建立函数体系回忆了二次函数的定义,其图象与性质及与一次、反比例函数图象的综合应用,相继进行,但此环节中“2a与b的关系”学生没有提到,迫于突破此难点,我让学生观察课例图象,并进一步引导观察对称轴的具体位置后,仅有十几个学生准确理解、掌握,于是我进一步的分析“2a与b的关系”由对称轴的具体位置决定,并说明由a>0与b>0能推导出2a+b>0的方法仅适于此题,但效果不尽人意,仍有一部分学生应用此法解决相关问题。本知识点预设6分钟完成而实际用了15分钟。如此导致处理二、2、(2)题时间紧张,使得重点不凸现。将第(3)题留为课后作业,来了个将错就错,为下一节课复习“二次函数与二元一次方程”的关系巧作铺垫。
在这次活动中,我受益匪浅,感受颇多:在如何备复习课,准确把握一个单元及一节课的重点及突破难点方面有了很大提高;在巧妙驾驭课堂方面有了很大进步;在如何与他人相处方面有了更好的认识,踏踏实实地做人。总之,在实践中获得灵感,在交流中撞出智慧,在反思中调整思路,在坚持中取得进步。
二次函数教学反思2本节的学习内容是在前面学过二次函数的概念和二次函数的图像和性质的基础上,运用图像变换的观点把二次函数的图像经过一定的平移变换,而得到二次函数的图像。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意“类比”前一节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。
通过本节课教学,得出几点体会:
1、在教学中二次函数图像的对称轴,顶点坐标,开口方向尤其重要,必需特别强调。
2、在探究中要积累研究问题的方法并积累经验,学生在前面已经历过探索、分析和建立两个变量之间的关系的过程,学习了一次函数和反比例函数,学会了用描点法作函数图象并据此分析得出函数的性质。我们可以把研究这些问题的方法应用于研究二次函数的图象和性质,并据此形成研究问题的基本方法。
3、要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。
本节课,我合理、充分利用了多媒体教学的手段,利用powerpoint,《几何画板》这两种软件制作了课件,特别是《几何画板》软件的应用,画出了标准、动画形式的二次函数的`图像,让抽象思维不强的学生,更加形象的结合图形,分析说出二次函数的有关性质,充分体现了“数形结合”的数学思想。为了突出重点,攻破难点,我要求学生“先观察后思考”、“先做后说”、“先讨论后总结”,“师生共做”充分体现了教学过程中以学生为主体,老师起主导作用的教学原则。本节课,让学生有观察,有思考,有讨论,有练习,充分调动了学生的学习兴趣,从而为高效率、高质量地上好这一堂课作好了充分的准备。
二次函数教学反思3复习目标:
知识目标:
1、了解二次函数解析式的三种表示方法,抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;
2、一元二次方程与抛物线的关系.
3、利用二次函数解决实际问题。
技能目标:
培养学生运用函数知识与几何知识解决数学综合题和实际问题的能力。
情感目标:
1、通过问题情境和探索活动的创设,激发学生的学习兴趣;
2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。
复习重、难点:函数综合题型
复习方法:合作交流
复习过程:
一、知识梳理
1、二次函数解析式的三种表示方法:
(1)顶点式:(2)交点式:(3)一般式:
2、填表:
抛物线对称轴顶点坐标开口方向
y=ax2
当a>0时,
开口
当a<0时,
开口
Y=ax2+k
Y=a(x-h)2
y=a(x-h)2+k
Y=ax2+bx+c
3、二次函数y=ax2+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而
4、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值
自评分(每空4分,共100分)
二、探究、讨论、练习(先独立思考,再分小组讨论,最后反馈信息)(屏幕显示)
已知二次函数y=ax2+bx+c的图象如图所示,试判断下面各式的符号:
(1)abc(2)b2-4ac(3)2a+b(4)a+b+c
(上题主要考查学生对二次函数的图象、性质的掌握情况:b2-4ac的符号看抛物线与x轴的交点情况;2a+b看对称轴的位置;而a+b+c的符号要看x=1时y的值)
2、已知抛物线y=x2+(2 ……此处隐藏8458个字……结合分析解决问题的优势。
(五)建立二次函数模型。利用二次函数来解决实际问题,重在建立二次函数模型。但是在解决最值问题时得注意,有时理论上的最大值(或最小值)不是实际生活中的最值,得考虑实际意义。
(六)注重二次函数与一元二次方程、一元二次不等式的关系。利用二次函数的图像可以得到对应一元二次方程的解、一元二次不等式的解集。
二次函数教学反思14求函数解析式是初中数学主要内容之一,求二次函数的解析式也是联系高中数学的重要纽带。求函数的解析式,应恰当地选用函数解析式的形式,选择得当,解题简捷,若选择不当,解题繁琐。在新课标里求函数解析式也是中考的必考内容,而在初中阶段主要学习了正比例函数、一次函数、反比例函数、二次函数。下面谈谈本人在教学和复习求函数解析式的具体做法:
一、使学生掌握待定系数法。
待定系数法是初中数学的一种重要解题方法,对于每位学生都必须掌握,并能熟练应用此法来求函数的解析式。待定系数法的基本步骤是:假设所求函数的解析式;把已知的量代入函数关系式,联列方程(组);求出方程(组)的解。
二、让学生明确二次函数两种关系式。
(1)、二次函数一般关系式:y=ax2+bx+c(a≠0)
(2)二次函数顶点式:y=a(x—h)2+k
对于以上这两种函数,要求学生理解关系式,及其性质和图象。
y=ax2+bx+c(a≠0)这是一个二元二次方程,若要求a、b、c,必须知道三个不同的解,然后联立方程组,从而求出a、b、c的值。
三、本节课自己的感想
曾听过这样的一个比喻,说“教师就象用以识别地图的图例”。教师必须解释教学过程中不同阶段出现的标志,使学生不断地追求、探索和获得。细究起来,它包涵着深层的含义:教师必须不断丰富自己的内涵、增强自己的业务技能,才能适应教学中时刻变化的新情况,才能照亮学生成长之路中的每一个标志。教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题条件下,让学生自己去寻找答案,自己去发现规律。最后,教师清楚地向学生总结每一种函数解析式的适用范围及一般应已知的条件。在信息社会飞速发展的今天,我们教师要从以前的教师教、学生学的观念中解放出来。《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长。
二次函数教学反思15这节课是人教版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现主体参与、自主探索、合作交流、指导引探的教学理念。整个教学过程主要分为三部分:第一部分是前置性作业,前置作业是前一天发给学生的,主要涉及如何作图、一次函数和反比例函数的性质等问题。我的设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让初三同学复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。第二部分是学习探究,探求活动前先让一名同学读了学习目标,让大家带着目标去探究。探究活动一是让学生在坐标纸上画出二次函数y=ax^2的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导大家要明确取点注意的事项,比如代表性、易操作性。这样学生在下一个环节就能游刃有余。学生在我的引导下顺利地画出了函数的图象。紧接着我让学生按照学案的要求自主探讨当a0时函数y=ax^2的性质。探究活动二是独立画出函数y=-2x^2的图象,然后是自主探讨当a0时函数y=ax^2的性质。探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。应该说探究活动二在活动一的基础上让学生锻炼了自我学习的能力,学生们完成的很好。探索活动三是小组合作活动。观察自己画出的两个图象,它们代表函数y=ax^2的两种情况,找出a的符号不同时他们的相同点、不同点和联系点。这个环节能充分发挥小组合作的优势,让学生在谈论中体会分类思想。小组讨论完毕后我让学生展示他们的成果,大部分学生跃跃欲试,他们讨论的很全面,出乎我的预料。这里面还有个知识点我是用几何画板演示的,就是通过改变a的值让学生们观察图象的开口方向和开口宽度。几何画板在此起到了突破难点的作用,让我真正体会到了掌握几何画板对自己的教学是多么的有利。第三部分是课堂检测。最后五分钟时我让学生们独立完成课堂检测部分题目。课堂检测共出了四个小题(基础题)一个应用题(选做题),下课铃声响了,大部分的同学还没有完成选做题,所以我就让同桌交换试卷,公布前四个基础题的答案。从当堂的反馈来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。
我的优点主要包括:
1、教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。
2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。
3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点。
我的不足之处表现在:
1、知识的生成过程体现的不够具体。在活动一中,虽然引导学生选点和列表,但是没有在黑板上演示作图的过程,虽然说明白了选点的注意事项但是学生还是被动的接受,他们不一定能理解为什么要选那个点。
2、作图的过程没必要放到课堂上来。可以事先在前置作业中让学生作图,在课堂上让学生汇报作图中遇到的困难,这样教师再去订正,效果要好很多。有时候就是要让学生经历错误的过程,这样他们才会懂。正所谓我听到的,我会忘记;我见到的,我会记住;我做过的,我会理解
3、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。
4、学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。
5、合作学习的有效性不够。其实在演示几何画板的过程中,学生在a0的情况下能得到a越大开口越小,a0的情况下a越小开口越大。但是综合起来学生就困难的多了。这个时候不妨让大家小组讨论完成知识的总结。有这样一种说法:你我各一个苹果,交换之后,你我还是一个苹果;你我各有一种思想,交换之后,你我却有了两种思想。这很形象地说出了合作学习的好处。教师把学习的主动权交给学生,把思维的过程还给学生,问题在分组讨论中得以共同解决。正所谓:水本无波,相荡乃成涟漪;石本无火,相击而生灵光。只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。
文档为doc格式